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LETTER TO THE EDITOR

The dynamics of on-line principal component analysis

M Biehl and E Schl̈osser
Institut für Theoretische Physik, Universität Würzburg, Am Hubland, D-97074 Ẅurzburg,
Germany

Received 5 December 1997

Abstract. The learning dynamics of an on-line algorithm for principal component analysis is
described exactly in the thermodynamic limit by means of coupled ordinary differential equations
for a set of order parameters. It is demonstrated that learning is delayed significantly because
existing symmetries among student vectors have to be broken. A closely related effect is
the perfect or partial loss of initial knowledge in the course of learning. The analysis shows
that different learning rates for the student vectors improve the performance of the algorithm
drastically.

Various supervised and unsupervised learning techniques [1, 2] have been studied
successfully by means of statistical mechanics methods in recent years [3, 4]. Although
the focus of these efforts has been on supervised learning in feed-forward neural networks,
interesting results have also been obtained for models of unsupervised learning [5–9].

A problem of particular importance in data analysis is the reduction of high-dimensional
data to lower-dimensional representations which contain as much information about the
original data as possible. One of the standard methods for this task is principal component
analysis (PCA) which determines for a given set of observed data the eigenvectors
corresponding to the largest eigenvalues of the empirical covariance matrix. Projections
on these characteristic vectors can serve as a faithful linear representation of the data, see
for example [1, 2] for detailed discussions. So far, the statistical mechanics analysis of PCA
has been restricted to the learning of a single characteristic direction [5, 6].

In memory based off-line or batch learning prescriptions all the example data are stored
and define a cost function. The learning process is then guided by the minimization of
this function. In this letter, however, we analyse the simultaneous learning of a number
of principal components by use of on-line algorithms which are based on the presentation
of single example data vectors [1, 10]. In practical situations, data often are provided
sequentially with no possibility of storing them. In addition, on-line learning is the natural
tool when the unknown data distribution is assumed to change during the learning process
(on the same time scale) [11].

A deeper theoretical understanding of unsupervised on-line learning processes should
be helpful in improving standard techniques or constructing new efficient algorithms. As a
first step towards this goal we investigateSanger’s Rule, an on-line learning scheme which
is well known and widely used for PCA [1, 12].

The theoretical investigation of the learning dynamics is based on two important
concepts: the consideration of high-dimensional inputs, and the performing of averages
over the disorder introduced by the randomness in the data. A few order parameters are
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sufficient to describe the typical behaviour of the system for an arbitrary numberM of
student vectors (withM small compared to the input dimensionN ).

We will demonstrate in this letter that the necessary breaking of symmetries among
the student vectors can dominate the time needed for the successful identification of the
principal components. Furthermore, the analysis shows how this learning time can be
reduced drastically by using learning rates which differ from student to student.

PCA takes into account second-order statistics of the observed data only. Therefore,
we consider a particularly simple input distribution:N -dimensional vectorsξ are taken to
consist of components independently drawn from Gaussian distributions with zero mean.
We assume the existence ofM relevant directions{Bi}i=1,...,M in RN (with M � N ). The
correlation matrixC = 〈ξξT〉 is taken to be of the form

C = I +
M∑
i=1

(b2
i + 2bi)BiB

T
i (1)

with orthonormal vectorsBT
i Bj = δij , the identity matrixI and positive parameters{bi}Mi=1.

The distribution can be interpreted as the result of deforming an isotropicN -dimensional
Gaussian cluster with data pointsξ̃ according to

ξ = ξ̃ +
M∑
i=1

bi(B
T
i ξ̃ )Bi. (2)

Note that theBi are the eigenvectors of the correlation matrixC corresponding to the

eigenvalues(1+ bi)2. Hence, assumingb1 > b2 > · · · > bM > 0, the set of vectorsBi
corresponds by definition to the ordered principal components of the data distribution.

In our model learning scenario, a sequence of example vectorsξµ is presented, which is
generated independently according to the above specified distribution. A set of student
vectors J l ∈ RN (l = 1, 2, . . . ,M) is updated according to Sanger’s rule [12] upon
representation of a single example:

J l(µ) = J l(µ− 1)+ ηl
N
x
µ

l

(
ξµ −

l∑
k=1

x
µ

k J k(µ− 1)

)
(3)

with the student projectionsxµl = J T
l ξ

µ. The learning ratesηl control the magnitude of the
updates of different students. Note that the dynamics ofJ l depends only on the vectors
J k with k 6 l. The algorithm (3) can be shown to converge and yield normalized vectors
(J 2

l = 1) in the limitηl → 0 [1]. Throughout this paper we assume an explicit normalization
at each time stepµ which involves additional terms of orderη2

l /N [6].
Sanger’s rule (3) enforces an ordering of the student vectors which, in general, results

in an identification of the vectorsBi upon presentation of infinitely many examples [1].
In contrast, a similar algorithm due to Oja [1, 13] is known to provide some basis of the
corresponding subspace with the actual result depending on the initial configuration.

The following analysis exploits the fact that the quantitiesxk = J T
k ξ and yj = BT

j ξ

(indicesµ omitted) are zero mean Gaussian variables with covariances

〈xkyj 〉 = (1+ bj )2Rkj 〈yiyj 〉 = (1+ bj )2δij

and 〈xkxl〉 = Qkl +
M∑
i

(b2
i + 2bi)RkiRli . (4)

Here the quantitiesRkl(µ) = J T
k (µ)Bl measure the overlaps of the student vectors with

the unknown principal components, whereas theQkl(µ) = J T
k (µ)J l(µ) correspond to their

mutual overlaps (Qkk = 1 due to normalization).
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The system can be described exactly in terms of these order parameters in the limit
N → ∞ as they become self-averaging quantities [14]. On the other hand, it is
straightforward to derive recursion relations from (3) which involve the randomξ only
in terms of the projections{xk, yk}. Hence, the disorder average can be performed time
step by time step. Furthermore, the averaged recursions can be interpreted as differential
equations in continuous timeα = µ/N for N → ∞, see for instance [15–17] for a more
detailed discussion of the formalism. The dynamics is then described exactly by a system
of (3M2−M)/2 coupled first-order differential equations of the following form:

dRlj
dα
= ηl〈xlyj 〉 − (ηl + η2

l /2)〈x2
l 〉Rlj (t)

−ηl
l−1∑
k=1

〈xlxk〉(Rkj −QlkRlj ) (k, l = 1, 2, . . . ,M)

dQlm

dα
= (ηl + ηm)〈xlxm〉 − ((ηl + η2

l /2)〈x2
l 〉 + (ηm + η2

m/2)〈x2
m〉)Qlm

−ηl
l−1∑
k=1

〈xlxk〉(Qkm −QklQlm)

−ηm
m−1∑
k=1

〈xmxk〉(Qlk −QkmQlm) (l 6= m). (5)

All averages on the right-hand side can be performed (4), yielding a closed set of
equations. For specific initial conditions and learning rates, numerical integration yields the
values of the order parameters for arbitraryα. In addition, an analytic treatment of fixed
point properties allows to investigate the system in the limitα → ∞ and with respect to
intermediate quasi-stationary states.

In order to measure the success of the learning process we consider the linear
reconstructionξ

est
= ∑M

i=1 xiJ i of the original dataξ from a given set of projections
{xi}. The expectation value of the corresponding quadratic error is minimized for
{J i = Bi}i=1,...,M or whenever the two sets of vectors span the same subspace, see [2].

Here, the average estimation error is

εest= 1

2
〈(ξ

est
− ξ)2〉 − 1

2
〈ξ2〉 = −1

2

M∑
k=1

〈x2
k 〉 +

M∑
k=1

k−1∑
l=1

〈xkxl〉Qkl (6)

and can be expressed in terms of the order parameters via (4). Note that the irrelevant
constant〈ξ2〉/2 has been subtracted in the definition ofεest. The evolution of the estimation
error in the course of learning can be obtained via (6) from integrating (5), yielding the
so-called learning curveεest(α).

Figure 1 shows a typical example of the evolvement of the cost function withα, the
inset displays the corresponding diagonal overlapsRll . For small enough learning ratesηl
the only attractive fixed point of the system is characterized by the asymptotic values

Rll(α→∞) = ±
√

b2
l + 2bl − ηl/2

(b2
l + 2bl)(1+ ηl/2)

Rlj (α→∞) = Qlj (α→∞) = 0 for l 6= j. (7)

This configuration reflects the identification of a specific principal component by each
student. However, the achievable absolute values|Rll| remain smaller than one for non-zero
learning rates (allηl = 0.1 in figure 1). Very small values ofηl yield good learning success,
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Figure 1. A typical learning scenario withM = 3: the cascade-like decrease ofεest and the
evolution of the corresponding diagonal overlapsRkk . The learning rate isηl = 0.1 for all
students, allRjk(0) = 0.06 apart from random deviation of the orderO (10−10).

but many examples are needed. With largerηl learning becomes fast, but the asymptotic
overlaps remain fairly small. Better results can be obtained with decaying, time-dependent
ηl(α), see the discussion later.

Note that forηl > ηcrit
l = 2bl(bl + 2) a configuration with the corresponding overlap

Rll = 0 becomes stable. This means that no learning of the principal components is
possible, which is analogous to the findings of [6]. Throughout the following, however, we
will assume that all learning rates are smaller than their respective critical value. Although,
therefore, (7) is the only purely attractive state of the system, additional repulsive states
exist due to the underlying symmetries of the learning problem. After a proper relabelling
of the students all these states could be characterized by (7) with some or all overlapsRll
set to zero. Before approaching its asymptotic values, the system of figure 1 is trapped
subsequently in the vicinity of such repulsive fixed points. There, the configuration is
almost stationary and only the presentation of a large number of further examples enables
another student to approach one of the principal components. This behaviour is similar to
the occurrence of plateau states in supervised learning (see, e.g., [16, 17]).

For simplicity we discuss the structure of these quasi-stationary states and their relevance
for the learning dynamics in terms of the model withM = 2 and identical learning rates
η1 = η2 = η to begin with.

It is straightforward to show that for any initial configuration withR11(0) = 0, this
overlap will remain zero in the course of learning. This property of Sanger’s rule is already
apparent in a system with only one student [6] since the update ofJ 1 is independent of
all other vectorsJ k(k > 2). A non-zero initial value ofR11 will eventually yield the
value given in (7). Here we focus on the dynamics of the subsequent students and assume
R11(0) > 0.

Due to the hierarchical structure of Sanger’s algorithm the above consideration does not
carry over directly to the evolution ofR22 and other overlaps, i.e. dR22/dα 6= 0 can hold
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even ifR22 = 0. Instead, it can be shown that the quantity

X =
∣∣∣∣R11 R12

R21 R22

∣∣∣∣ = R11R22− R12R21 satisfies
dX

dα
= 0 for X = 0. (8)

A value ofX = 0 corresponds to vectorsJ i with linear dependent projections in the space
spanned by the principal components. As a consequence of (8), a set of students with
X(0) = 0 is not able to identify both principal components even with considerable initial
knowledge (Rjk > 0 for all j, k). The conserved symmetry (8), together with the asymptotic
orthogonalization of student vectors, enforcesR22→ 0 (andR21→ 0) whenR11 increases.
This effective loss of prior information is illustrated in figure 2.

Figure 2. A learning scenario withM = 2, described by the evolution of all overlaps of the
students and the principal components. Initial conditions are:Rlk = O (10−2),Q12 = Q = O
(10−4) andX = O (10−10). ηl = 0.1 for both students.

A linearization of the equations aroundRjk = 0 for j, k = 1, 2 andQ12 = 0 shows that
a non-zero|X| will increase exponentially withα. Equations (5) decouple in the vicinity
of this configuration and one obtains

X(α) = X(0) · eλα with λ = (b2
1 + 2b1+ b2

2 + 2b2)η − η2. (9)

Hence, the time needed for the students to achieve a significantX = O(1) is αp ≈
−ln |X(0)|/λ. This is a measure for the time that the system will spent in the vicinity
of the above specified repulsive fixed point. The logarithmic dependence of theplateau
length αp is demonstrated in figure 3 for a range of initial valuesX(0). Randomly drawn
initial student vectors without prior knowledge will result in small overlapsRjk(0) of order
O(1/
√
N) andX(0) = O(1/N). Thus the plateau length will diverge asαp ∝ lnN with

the system size in realistic scenarios.
It is important to observe that the conservation of the symmetryX = 0 (equation (8))

holds true only for exactly identical learning ratesη1 = η2. Without this restriction one
obtains an equation of the form

dX/dα = aX + b(η1− η2)
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Figure 3. The plateau in the learning process shows a logarithmic dependence inX. Apart
from X, initial conditions are the same as in figure 2.

Figure 4. Estimation error for equal learning rates as shown in figure 1 (curvea), learning rates
η2=1.009η1 andη3=0.99η1 (curveb) and learning ratesη2=1.09η1 andη3=0.9η1 (curvec).

indicating that |X| will increase withα even forX(0) = 0. The quantitiesa and b
are, in general, non-zero and depend onRkj andQkl . For small differences|η1 − η2| and
X(0) = 0 the system escapes from the restricted subspace after a time of order−ln |η1−η2|.
Sufficiently different learning rates prevent the system from approaching the vicinity of the
intermediate state withR22 = 0. Note that this effect is not related to the natural ordering of
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the principal components. The improvement in comparison withη1 = η2 does not depend
crucially on which learning rate is taken to be the smaller one.

In the model withM students andηl = η for all l the determinantX(M) of the
matrix of overlapsRkj shows a behaviour analogous to equations (8) and (9). Due to
the hierarchical structure of Sanger’s rule the same is true for the sub-determinantsX(k)

with k = 1, 2, . . . ,M.
In figure 1 one can notice how a system withM = 3 units visits different plateaus

consecutively, which correspond toX(1) = R11 ≈ 0, X(2) = X ≈ 0 andX(3) ≈ 0,
respectively. Slightly different learning rates break these symmetries efficiently and enable
the system to leave the quasi-stationary states much faster, see figure 4.

Further improvements could be achieved with time-dependent learning ratesηl(α) which
are roughly constant for smallα and decay like 1/α for α → ∞ [2]. Note that this
modification affects the asymptotic result rather than the occurrence of the above described
plateaus.

The impressive success of avoiding plateaus by simply choosing different learning rates
is not limited to on-line PCA. Similar results are obtained for the supervised training of
multilayer networks and other learning scenarios. These findings will be presented in
forthcoming publications. Current research furthermore concerns the optimization of the
learning ratesηl by means of variational methods [18, 19].
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